
Modernizing SCAP

Gabriel Alford
Member of the Technical Staff
Office of the Chief Technologist
Red Hat Public Sector



Back in the day….

- SRR scripts
- Gold disk
- Multiple other implementations

2

The Dark Ages.



SCAP to the rescue!

- Standardized way of scanning systems
- In 2011, RHEL6 brought collaboration with 

the scap-security-guide project
- NSA
- DISA
- Integrators

- scap-security-guide project expressed 
SCAP content in XML Shorthand

- Red Hat & NSA traveled all over the US 
leading various SCAP workshops

3

The Dark Ages.
A Source of Light.



Why is this XML and why is it so 
complicated?

- Feedback from workshops
- Feedback from operational sites
- Feedback from users
- Community shrinking

4

The Dark Ages.
A Source of Light.

Storm on the Horizon.



“SCAP is a complicated and legacy 
language! Use ours instead.”

Feedback from various cloud scanner vendors 
including those with SCAP-validated scanners

- Tenable audit.rules
- Red Hat Ansible
- Chef Inspec
- Qualys
- Aquasec

5

The Dark Ages.
A Source of Light.

Storm on the horizon.
Views of Today.



- Make people happy again

- YAML for authoring
- JSON for final “machine” language 

format
- Start with XCCDF, OCIL, and OVAL
- Remaining components  to follow 

later

6

The Dark Ages.
A Source of Light.

Storm on the horizon.
Views of Today.

Potential Iteration to 2.0.



7

Show YAML XCCDF

XCCDF 2.0 YAML Rule Example
- id: selinux_state

  title: 'Ensure SELinux State is Enforcing'

  description: |-
The SELinux state should be set to SELINUX={{ var_selinux_state }} at
system boot time.

  rationale: |-
Setting the SELinux state to enforcing ensures SELinux is able to confine
potentially compromised processes to the security policy, which is designed to
prevent them from causing damage to the system or further elevating their
privileges.

  severity: high

  identifiers:
cce: 27334-2

  references:
disa: 2165,2696
nist: AC-3,AC-3(3),AC-3(4),AC-4,AC-6,AU-9,SI-6(a)
srg: SRG-OS-000445-GPOS-00199



8

Show YAML OCIL

- id: selinux_state

  title: 'Ensure SELinux State is Enforcing'

  audit_question: |-

       Check the file /etc/selinux/config and ensure the following line appears:

       SELINUX=Enforcing

       Is it the case that SELINUX is not set to enforcing?

  audit_action:

       when_true: pass

       when_false: fail

OCIL 3.0 YAML Example



9

Show YAML OVAL

OVAL 6.0 YAML Example
- id: selinux_state

  title: 'Ensure SELinux State is Enforcing'

  description: |-

The SELinux state should be set to SELINUX={{ var_selinux_state }} at

system boot time.

  metadata:

       type: compliance

       platforms:

           - RedHat >= 7

       version: 1

  checks:

    - textfile:

        path: /etc/sysconfig/selinux

        type: file

        pattern: '^[\s]*SELINUX[\s]*=[\s]*(.*)[\s]*$'

        line: 'SELINUX={{ var_selinux_state }}'

        instance: only_one_exists

        state: exists



10

Show YAML XCCDF

- id: selinux_state

  title: 'Ensure SELinux State is Enforcing'

  description: |-

The SELinux state should be set to SELINUX={{ var_selinux_state }} at

system boot time.

  rationale: |-

Setting the SELinux state to enforcing ensures SELinux is able to confine

potentially compromised processes to the security policy, which is designed to

prevent them from causing damage to the system or further elevating their

privileges.

  severity: high

  audit_question: |-

       Check the file /etc/selinux/config and ensure the following line appears:

       SELINUX=Enforcing

       Is it the case that SELINUX is not set to enforcing?

  audit_action:

       when_true: pass

       when_false: fail

  metadata:

       type: compliance

       platforms: RedHat >= 7

       version: 1

  checks:

    - textfile:



11

Show YAML XCCDF

....

        path: /etc/sysconfig/selinux

        type: file

        pattern: '^[\s]*SELINUX[\s]*=[\s]*(.*)[\s]*$'

        line: 'SELINUX={{ var_selinux_state }}'

        instance: only_one_exists

        state: exists

  remediations:

    - bash: |-

        grep -q ^SELINUX= /etc/selinux/config && \

        sed -i 's/SELINUX=.*/SELINUX={{ var_selinux_state }}/g' /etc/selinux/config

        if ! [ $? -eq 0 ]; then

      echo 'SELINUX={{ var_selinux_state }}' >> /etc/selinux/config

        fi

    - puppet: |-

        file_line { 'Ensure SELinux is enabled':

       path  => '/etc/selinux/config',

       line  => 'SELINUX={{ var_selinux_state }}',

       match => '^SELINUX=\w+',

        }

    - chef: |-

        ruby_block 'replace_line' do

          block do

            file = Chef::Util::FileEdit.new('/etc/sysconfig/selinux')

            file.search_file_replace_line('SELINUX=, 'SELINUX={{ var_selinux_state }}')

            file.write_file

          end

        End



12

What this allows

● Easier to understand and edit
● Faster development - tools and content
● Follows industry trends
● An inherent API in the SCAP standard
● Broader database support
● Greater flexibility

○ Tailoring 
○ Building SCAP content
○ Smaller file sizes

● Integration opportunities
○ Other standards such as STIX, TAXII, etc.
○ Easily send data to AI and ML frameworks such as Tensorflow



13

Initial Steps

● Create a top-level GitHub development organization containing all the components of the 
SCAP standard

○ https://github.com/SCAP/xccdf
○ https://github.com/SCAP/oval
○ https://github.com/SCAP/ocil

● SCAP documentation should be written in Markdown or reStructuredText
○ No more monolithic word docs or PDFs for specs as inputs
○ Specification can be generated easily in multiple different output formats

● Update SCAP components to be YAML-based authoring and JSON-based machine language



14

Final Thoughts

● Don’t reinvent the wheel! Give it new tread!  



Questions?


