OVAL - language for experts

Matej TyC, Marek HaiCman
Security Compliance @ Red Hat



e How is it to get started w. OVAL.
* What are the first impressions of OVAL newbie.
 OVAL and true security.



Where to learn about OVAL?

* oval.mitre.org: Allegedly “archived”, contains lang reference
* ovalproject.github.io: Has tutorial, but no reference docs.
* oval.cisecurity.org: Not a learning resource

e Github ClSecurity
* Github OVAL-Community
* Github OVALProject



Bad signal-to-noise ratio

* The Tutorial example (only packages from the whitelist are
allowed) ~ 60 lines without comments.



Bad signal-to-noise ratio

—<oval_definitions xsi:schemaLocation=" http://oval.mitre.org/XMLSchema/oval-definitions-5 oval-definitions-schema.xsd http://o
http://oval. mitre.org/XMLSchema/oval-common-5 oval-common-schema.xsd http://oval. mitre.org/XMLSchema/oval-definitions-5#un:
definitions-schema.xsd">
— <generator>

<oval:product_name>Tutorial Example Generator</oval:product_name>
<oval:schema_version>5.11</oval:schema_version>
<oval:timestamp>2014-12-21T04:42:18.845-05:00</oval:timestamp>
</generator>
— <definitions>
— <definition id="oval:tutorial:def:1" version="1" class="compliance">
— <metadata>
<title>RPM WhiteList</title>
<description>Fail if anything not on the whitelist is installed</description>
</metadata>
— <criteria>
<criterion comment="Test to check that only listed packages are installed." test_ref="oval:tutorial:tst:1"/>
</criteria>
</definition>
</definitions>
— <tests>
—<rpminfo_test id="oval:tutorial:tst:1" version="1" check="all" check_existence="none exist' comment="all packages">
<object object_ref="oval:tutorial:obj:2"/>
</rpminfo_test>
</tests>
— <objects>
—<rpminfo_object id="oval:tutorial:obj:2" version="1" comment="Filtered Packages">
<name datatype="string" operation="pattern match">*</name>
<oval-def:filter action="exclude">oval:tutorial:ste:1 </oval-def:filter>
</rpminfo_object>
</objects>
- <states>
— <rpminfo_state id="oval:tutorial:ste:1" version="1">
<name data ="string" operation="equals" var_ref="oval:tutorial:var:1"/>
</rpminfo_state>
</states>
— <variables>
—<constant_variable id="oval:tutorial:var:1" version="1" datatype="string" comment="Package Names">
<value>termcap</value>
<value>auditd</value>
<value=>libselinux</value>
</constant_variable>
</variables>
</oval_definitions>



Bad signal-to-noise ratio

* The Tutorial example (only packages from the whitelist are
allowed) ~ 60 lines without comments.

* Too much for a Hello World example!
* Equivalent Python code: 10 lines of self-explanatory code.



Difficult concepts

 Variables are lists.

* Tests have check and check_existence. Check is required,
but it Is not used if there is no state in the test.



Difficult concepts

 Variables are lists.

* Tests have check and check_existence. Check is required,
but it Is not used if there is no state in the test.

 criteria use the extended logic (pass, fail, notchecked, ...)
with AND / OR / NOT operators.

 OVAL can reference other variables, tests and so on —
without a supportive tooling, it is hard to have everything at
one place.



Language vision

 OVAL is more fine-grained.
- Python: assert a ==

- OVAL: There is a test that object a conforms to
state b using the equality relation.

* But not always:

- OVAL.: textfilecontent54 object determines files to
be examined AND regular expression.

- Python: Files and a function evaluating them
would be separate entities.



Language vision

* C: Functions return error code, take pointers as
arguments.

e C++: Compatible with C, but you have objects and a really
wide range of possibilities how to do things.

* Python: import this # shows the Zen of Python
 OVAL: declarative language



Limitations — config. compliance

* Simple OVAL is OK to check for “default installation” errors
or admin omissions.

e Configuration means config files, but textfilecontent
test/object/state combinations are not powerful enough

— Config file ordering issues
- Multi-ine comments
- Include statements



For proper configuration compliance, much more special
tests are needed. What about this:

1) SW authors expose config-parsing libraries.

2) Security Compliance SMEs formulate the object/state
Interfaces.

3) The developed test is shared with the community.
4)What about the OVAL sandbox?




Supportive tooling

 Provide test environment with scenarios.
e Extract rule’s OVAL to one place.
e Visualize OVAL results.

Debug OVAL evaluation.



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

